

Chapter 4: Work and Energy

<u>Section A</u>

- 1. Newton-metre is the unit of
 - a) Power b) Work c) Momentum
 - *a)* Gravitational Intensity
- 2. A body is moved through a distance of 3 m in the following different ways. In which case is the maximum work done?
 - *a*) When pushed over an inclined plane
 - *b)* When lifted vertically upward
 - *c)* When pushed over smooth rollers
 - *d*) When pushed on a plane horizontal surface.
- 3. No work is done when
 - *a*) a donkey is carrying a load on its back
 - *b)* on engine is pulling a train
 - *c)* a sail boat is moving due to wind energy
 - *d*) a wind mill is lifting water from a well.
- 4. What is the work done by a boy in pushing a book with a force of 5 N and displacing it through 20 cm along the push?
 - a) 1J b) 2J c) 1.5 J d) 3J

<u>Section B</u>

- 1. Define work. Is it scalar or vector quantity?
- 2. What is the condition for a force to do work on a body?
- 3. A man is rowing a boat upstream, but his boat remains at rest with respect to the shore. Is he doing any work?
- 4. Give an example where the displacement of a particle is in the direction opposite to force acting on this particle.
- 5. What happens to the work done when the displacement of a body is at right angles to the direction of force acting on it? Explain your answer.

Section C

- 1. A ball of mass 1 kg thrown upwards, reaches a maximum height of 5 m. Calculate the work done by the force of gravity during this vertical displacement.
- 2. A person pulls a body on a horizontal surface by applying a force of 5 N at an

angle of 30° with the horizontal. Find the work done by this force in displacing the body through 2 m. (cos $30^{\circ} = \sqrt{3/2}$)

- 3. A horizontal force of 50 N displaces on object of mass 100 kg. Calculate the distance moved and work done by the force in 8 seconds.
- 4. A car of mass 2500 kg travelling at a speed of 40 m/s stops after covering a distance of 50 m when brakes are applied. Calculate (a) the force exerted on it by the brakes (b) work done by brakes.

- 1. The kinetic energy of a body depends
 - *a*) on its mass only
 - *b*) on its speed only
 - c) on its mass as well as on its speed
 - *d*) neither on its mass nor on its speed.
- 2. A body of mass 10 kg is dropped from a height of 2m. If g is taken to be 10 m/s², the kinetic energy of the body just before striking the ground will be
 - *a*) 400J *b*) 4J *c*) 40J *d*) none
- 3. A ball is thrown upwards from a point A. it reaches up to the highest point B and returns at the same point. Which of the following statement is correct:
 - *a*) Kinetic energy at A = kinetic energy at B
 - *b*) Potential energy at A = potential energy at B
 - *c*) Potential energy at B = kinetic energy at B
 - *d*) Potential energy at B = kinetic energy at A
- 4. When the speed of a particle is doubled, its kinetic energy
 - *a*) remains the same *b*) gets doubled *c*) becomes half
 - *d*) becomes 4 times.
- 5. When the speed of a body is doubled, the ratio of kinetic energy to its momentum.
 - *a*) gets doubled *b*) remains the same *c*) becomes half
 - *d*) becomes 4 times.
- 6. Two bodies of unequal masses are dropped from a cliff. At any instant, they have equal
 - a) momentum b) acceleration c) kinetic energy
 - *d*) potential energy.

Section B

1. Differentiate between work, power and energy. Also state their S.I. units.

- 2. Define kinetic energy. Give one example also.
- 3. By what factor does the kinetic energy of a particle of mass m increase if the speed is increased by factor of 3?
- 4. Does the kinetic energy of a body depend on its direction of motion?
- 5. By how much will the kinetic energy of a body increase if
 - *i*) Speed is doubled *ii*) Speed is halved.
- 6. Deduce the formula of kinetic energy of a body moving with velocity, v

Section C

- 1. A ball of mass 0.5 kg slows down from a speed of 5m/s to that of 3m/s. Calculate change in kinetic energy of the ball.
- 2. A block is thrown upwards with a K.E. of 2J. If it goes up to a maximum height of 2m, find the mass of the block.
- 3. The mass of a ball A is double the mass of Ball B. The ball A moves at half the speed of ball B. Calculate the ratio of K.E. of A to K. E. of B.
- 4. A body A of mass 3 kg and body B of mass 2 kg are dropped simultaneously from a height of 14.9 m. Calculate
 - *a*) Their momenta *b*) their kinetic energies

When they are 5 m above the ground

<u>Section A</u>

- 1. A body is dropped form a certain height above the ground when it is half way down, it possesses
 - *a*) Only kinetic energy *b*) Only potential energy
 - *c)* Both kinetic and potential *d*) no energy at all energy
- 2. A flying aeroplane possesses
 - a) Only P.E. b) Only K. E.
 - c) both potential and kinetic energy
 - *d*) Neither potential nor kinetic energy.
- 3. In which of the following cases is the potential energy of a spring minimum?
 - *a)* When it is compressed
 - *b)* When it is extended
 - *c)* When it is at its natural length
 - *d*) When it is at its natural length but kept at a height above ground.
- 4. When a body roller down an inclined plane,

	а) с)	Only K.E both K.E a	nd P.E	b) d)	only P.E neither K.E. nor P.E.						
5)	kWh is unit of										
	a)	Power	b)	momentum	<i>c)</i>	impulse	d)	energy			
6)	The	The unit of power is									
	a)	Watt	b)	joule	<i>c)</i>	newton	d)	kg			
7)	No.	No. of joules in kWh is									
	a)	36×10 ³	b)	36×10-4	c)	36×10 ²	d)	3.6 ×10 ⁶			
		Castion D									

Section B

- 1. Differentiate between work, power and energy. Also state their SI units.
- 2. Define potential energy. Give one example.
- 3. Which of the following are examples of potential energy?

a)	A boy at the top of a slide	b)	a stretched catapult
c)	a hot iron	d)	a stretched bow

- *e)* the arrow in stretched bow
- 4. State the principle of conservation of energy.

Section C

- 1. A ball is dropped from a height H. When it reached the ground, its velocity is 50 m/s. Find height H.
- 2. A body of mass 100 kg is lifted up by 10 m. Find
 - *i)* Amount of work done
 - *ii)* Potential energy of the body at that height (value of $g = 10 \text{ m/s}^2$)
- 3. A boy weighing 40 kg carries a box weighing 20 kg to the top of building 15 m high in 25 sec. Calculate the power. ($g = 10 \text{ m/s}^2$)
- 4. Two persons do the same amount of work in 10s and 20 s respectively. What is the ratio of the power used by first person to that by second person?
- 5. Calculate the power developed by a 110 kg mass climbing up a vertical staircase at the rate of 2m/s. (g= 9.8 m/s²)